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Abstract. By means of suitable dual problems to the following global optimization problems: 
extremum (f(z) : z E M C X}, where f is a proper convex and lower-semicontinuous func- 
tion and M a nonempty, arbitrary subset of a reflexive Banach space X, we derive necessary and 
sufficient optimality conditions for a global minimizer. The method is also applicable to other non- 
convex problems and leads to at least necessary global optimality conditions. 
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1. Introduction 

A great number of practically important issues in sciences, economics and engi- 
neering leads to constrained global optimization problems. In recent years a rapidly 
growing number of proposals has been published for the numerical solving of spe- 
cific classes of multiextremal global optimization problems, for example Ritter 
[22], Hoffmann [13], Benacer and Tao [2], Snyman and Fatti [23], Tao [26], Parda- 
los and Rosen [19], Ratschek and Rokne [21], Horst et  al. [16], Horst and Tuy 
[14], Bulatov [3], Mikhalevich et  al. [18] and Chichinadze [30]. Large classes of 
global optimization were examined in the last years, among others the Lipschitz 
programming and the d.c.-programming. See for instance Horst [15], Horst and 
Tuy [14], Hiriart-Urruty [11], Tuy [28], Pinter [20], Dem'yanov and Vasil'ev [7], 
Toland [29], Auchmuty [1], Tao [26] and Craven et  al. [6]. 

Development of further numerical methods for global optimization problems is 
associated with the search for necessary and sufficient optimality conditions. There 
exist several criteria for a global minimizer of a nonconvex function, see Horst and 
Tuy [14]. These criteria possess also a global character. 

A method for solving global optimization problems is based on the ~-transform- 
ation of Chichinadze [30] and is related to the so-called integral methods, see 
Galperin and Zheng [9] and Chew and Zheng [4]. Hiriart-Urruty [11] gives nec- 
essary and sufficient optimality conditions for a global minimum of a d.c. func- 
tion in terms of the e-subdifferentials of both convex functions, compare also 
Hiriart-Urruty and Lemarechal [12]. By means of the results of convex analysis, 
as Hiriart-Urruty and Lemarechal, also Strekalovskiy [24] investigates nonconvex 
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optimization problems and proves necessary and sufficient optimality conditions 
by means of a consideration of the normal cones of certain sets. He obtains new 
global optimality criteria for problems of the form 

e x t r e m u m ( f ( x )  : x E M }  , (1.1) 

where f is a proper convex and closed function and M a nonempty arbitrary subset 
of a reflexive Banach space. 

Inspired through Strekalovskiy [24], in this paper we also investigate the prob- 
lems (1.1) and prove necessary and sufficient optimility conditions for a global 
minimizer or maximizer of (1.1). In contrast to Strekalovskiy [24] we make use of 
suitable dual problems of (1.1). We use the idea of the representation of a convex 
function as a supremum of a family of affin-linear functions, see Dem'yanov and 
Vasil'ev [7], and construct a dual problem. Then one can prove that a duality gap 
cannot occur. This method of using a dual problem immediately leads to sharp 
necessary conditions for global optimality and is also applicable to problems (1.1) 
with nonconvex functions, where the duality relation must be fulfilled. The suf- 
ficiency of the corresponding optimality conditions one can prove by means of 
changed mean valued theorems for convex functions. 

In this way we obtain in the case of the problem 

s u p { f ( x ) : x  �9 M }  (1.2) 

the same optimality condition as Strekalovskiy [24], in the second case but another 
condition. This other condition is of a different kind as Strekalovskiy's correspond- 
ing condition and it is hard to compare these conditions because the methods of 
proofs are different. Applications and examples for the obtained results are given, 
where we notice that the application of Strekalovskiy's optimality condition for 
(1.2) on the problems of mathematical programming are given in Strekalovskiy 
[24]. 

2. Minimization of  a Convex Function over an Arbitrary Nonempty Set 

Let X be a real reflexive Banach space with the dual space X*. The canonical 
bilinear form on X x X* is denoted by (., .). 

Throughout, we shall use the following notations. Let M be a nonempty subset 
of X,  then bd M, cl M and int M means the boundary, closure and interior of M, 
respectively. 

Let the function f : X --+ RU {+oo} be a lower-semicontinuous proper convex 
function, we denote with 

O f ( x )  = {x* E X*  : f ( y )  - f ( x )  >_ ( x * , y -  z)} 

the subdifferential of the function f at a point x E dom f ,  the effective domain of 

f. 
Then we consider as the first problem (P1) the following minimization problem 
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inf(P1) := inf f (x )  > - o o  (2.1) 
x E M  

and want to construct a necessary and sufficient optimality condition for a global 
minimizer x0 E M for (2.1). For that reason we define to the primal problem (/~ 
a corresponding dual problem (D1) 

inf(Di)  := inf i n f  [f(z) + (p(x) ,x  - z)] .  (2.2) 
z E P  xCM 

Here the set M C P is a subset of the set P and p(x) E Of(x) an arbitrary 
subgradient of f at the point x E X. Then we can prove that a duality relation for 
(/91) and (D1) is fulfilled. D (Of) denote the effective domain of the subdifferential 
mapping Of �9 X --+ 2 x* . 

The problem (D1) one can view as a dual problem of (P1) because of the valid 
inequality for the convex function f and the subgradient of f as a dual element. 

LEMMA 2.1. If  M C D(Of) holds, then the duality relation 

inf(P1) = inf(D1) (2.3) 

is valid. 
Proof. For x E X with p(x) e Of(x) the inequality 

y(z)  > f (x )  + (p(x) , z  - . )  w e x 

holds, it follows that the inequality for x = z E M 

inf(Pl)  > inf inf [f(z) + (p(x), x - z}] > inf(P1) 
-- x C M  z E P  

is fulfilled. Therefore we have proven the duality relation (2.3) for each set P D M. 
[] 

COROLLARY 2.2. If  one chooses the set P in the following manner 

P := l.J {z e X "  f (z )  = f ( w ) } ,  (2.4) 
w E M  

then P D M is valid, we obtain as the dual problem (D1) 

inf(D1) = inf [f(w) + inf inf (p(x) ,x  - z)] (2.5) 
w E M  f ( z ) = f ( w )  xCM 

and the duality relation (2.3) is also fulfilled. 

The proof follows immediately from the assumptions. Now we use the dual prob- 
lem (2.5) and the equation (2.3) to prove global optimality conditions for (2.1). 

THEOREM 2.3. Suppose that the assumption M C D(Of) holds. I f  the element 
xo �9 M is a solution of the primal problem (P1), then the following condition with 

�9 of( ) 
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(p(x), x - z) > 0 Vx E M and Vz E X : f ( z )  : f (xo)  (2.6) 

holds. 
Proof  If x0 E M is a solution of (P1), then we obtain by (2.3) and (2.5) the 

equation 

f (xo)  = inf [f(w) + inf inf (p(x) ,x  - z)]. 
wEM f(z)=f(w) xEM 

From this with w = x0 E M it follows that (2.6) is valid. [] 

By Ekeland and Temam [8, II, w the equivalence 

inf f ( x )  = f (xo)  ~ ( f ' (x) ,  x - xo) > 0 Vx E M 
xEM 

holds for a convex and continuously Gfiteanx-differentiable function f and a con- 
vex set M of restrictions. The condition (2.6) appears as a generalization of this 
known variational inequality for an arbitrary set M of restrictions. 

LEMMA 2.4. I f  the set M is additionally a convex set, then the necessary condition 
(2.6)for a global minimizer xo E M of  (P  I) is also sufficient. 

Proof  From the optimality condition with p(y) E Of(y) 

( p ( y ) , y -  z) > 0 Vy E M and Vz E X : f ( z )  = f (xo)  

it follows that with z = x0 and y = )~x + (1 - ,~)x0 for x E M and A E [0, 1] the 
inequality 

and p (x0 +A (x - x 0 ) ) E 0  f (zo +)~ (z - x0)) is valid. For A > 0  and sufficiently 

Og(xo- + ) ~ ( x -  xo)) is especially a bounded set small that the subdifferential 

in the reflexive Banach space X*. Therefore there exists a weakly convergent 

subsequence p ( x0 + )~'( x - x0 )) --+ p(x0) with x0 + A'(x - xo ) --+ x0 as )~' --+ +0  

and because of the upper semicontinuity of the point-to-set mapping Of we obtain 
the inequality (p(xo), x - xo) > 0 Vx E M. Due to f ( x )  > f (xo)  + (p(xo) ,z  - 
xo) > f (xo)  ~/x E M holds, this implies the optimality ofzo e M for (P1). [] 

The condition (2.6) as a necessary and sufficient condition for a global minimizer 
x0 E M also in the case of a convex set M of restrictions is new in the literature. 
Usually one can find the condition Of(zo) M P+(x0) ~ 0, see Dem'yanov and 
Vasil'ev [7], Sukharev et al. [25], where F + (x0) is the conjugate cone to the cone 
of feasible directions of M at x0 E X. 

THEOREM 2.3. Suppose that the assumptions 
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-co _< inf(f, X) < f(v) Vv E M (2.7) 

and 

{x E X : f ( x )  < f ( v ) }  C in tdom f Vv E M (2.8) 

are fulfilled. Then by the condition (2.6) it follows that xo E M is a global minimizer 
of(P1). 

Proof. We denote with La :=  {x E X " f ( x )  <_ a}, a E R, the level sets of 
the convex function f and introduce the function ff : X --+ R U {+co}  given by 

�9 (z) = inf (p(x), x- z). 
f(z)=f(x) 

By (2.3), (2.5) and the convexity of f it follows that the inequality 

�9 (x) > f ( x )  - f (xo)  Vx E X (2.9) 

holds. 
Consider in the proof two cases for the convex and closed level set Lc = {x E 

X : f ( x )  < f (xo)  = c}, which has a nonempty interior. 
In the first case we suppose that Lc is an unbounded set. If  we now assume that 

there exists an element ~ E M so that f (~)  < f (xo)  = f (xo)  = e holds, then we 
consider the continuous and convex real function ~o : [0, +co)  --+ R defined by 

= : ( z  + - z ) )  - : ( z )  - t i 

with p(~) E Of(~) and z E X : f ( z )  = f (xo)  = e. Then ~(0) = 0, q(t) :=  

( ( ) ) _ O (llana I,l >_o. ,  > 1 p z + t ( ~ - z )  - p ( ~ ) , ~ - z  E 0 ~ ( t ) f o r t > 0 , 0  

Furthermore qo(1) = f (~)  - f ( z )  - (p(~), ~ - z) < 0 is true. I f  qo(1) = 0 holds, 
we get (p(~), ~ - z) < 0 and ~,(~) < 0 in contrast to (2.6). I f  ~(1) < 0 is valid, 
then there exists a point s > 1 so that ~o(s) = 0 is true. It follows that 

: ( z  + s ( ~ -  z))  - : ( z ) = ,  (p(~),~ - z) (2.10) 

holds. To ~ E int Lc one can find an element z E bd Lc so that z + t(~ - z) E Lc 
for all t _> 0 is fulfilled due to the unboundness of the level set Lc. Therefore 

E intLc, f ( z  + s ( ~ -  z)) < / ( z ) = / ( x 0 ) = c w i t h s >  l a n d b y  Z 2c S(~-- Z) 
(2.10) ~(~) < 0 in contrast to (2.6). 

In the second case we suppose that Lc is a bounded set. We now assume that 
also there exists an element ~ 6 M so that f (~)  < f (xo)  = c is true. Then there 
exists an element ~ 6 X with 

--co < inf(/, X) = f(.~) < f(~). 

Consider the line x (t) = t .~ + (I - t)~ in X, t E R. The points z l = t l .~ + (I - t l) 
with tl < 0 and z2 = tx .~ + (I - t2)5 with t2 > 1 are the intersection points of 
the line above and the boundary bd Lc of the bounded convex and closed level set 
Lc, so that f ( z l )  = f(z2) = c is true. 

With the convex and continuous function @ �9 [tl, t2] --+ R 
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r  = f ( t ~  4- (1 - t)~) - f ( z l )  - (t - t l )  (p(~), Z, - ~) 

we obtain r  = f (~)  - f ( z l )  + (p(~), zl - ~) < 0. I f  r  = 0 holds, then 
f (~)  - f (Z l )  = (p(~), ~ - zl) < 0, contrary to (2.6). 

I f  r  < 0 holds, then we have 

q(t)  

~b(t2) ~- - - ( t  2 --  t l )  ( p ( ~ ) ,  fig --  ~ ) .  

Now we consider the level set L.y = {x E X : f ( x )  -< f (~)  = 7}. By Ioffe and 
Tichomirov [16, 4.3, Hilfssatz 2] we obtain for the normal cone of the level set L~, 
at the point ~ E bd L 7 

NLv(~  ) ---- {~* E X* : ( ~ * , x -  ~) _< 0 Vx E L v }  = c o n e 0 f ( ~ ) .  

It follows that (p(~), �9 - ~) < 0 and therefore r _> 0 is valid. If  r  = 0 is 
true, then we have 

f(.~) >_ f(~) 4- (p(~), ~ -- ~) = f(~) 

in contrast to the assumption. For that reason r > 0 is true and there exists an 
intermediate value 

:(~ 4- $(;~ -- ~)) -- :(ZI) -- (8 -- tl) (p(~), ~: -- ~) = 0 r 

to y :=  ~ 4- s(.~ - ~) E int Lc it follows that 

= - y )  < 0 

with s < t2. Due 

f(y) --/(za) 

contrary to (2.6). 

EXAMPLE 2.6. 

[] 

Consider the function f with 

f(X) = (Xl 4- 1) 2 4- (x2  4- 1) 2 , x = (x  h x2) T E M = M1 U M2 C R z , 

where 

M I = { x E R  2 : 0 _ < x i <  1, i = l , 2 }  

M 2 = { x E R 2 : 2 - < x l  _<3, 0_< z2 -< I } .  

For the problem infxe M f(x) the points v = (2, 0) T and w = (0, 0) T are critical 
points. We check by means of condition (2.6) whether one of the points is a global 
minimizer of jr over M.  

For v = (2,0) T = z and x = (Xl,X2) T = (1,0) T E M1 C M we get 
( f~(x) ,  x - z) = - 4  < 0. Therefore v is not a global minimizer of the problem 
above. 

For w = (0, 0) T and f ( w )  = 2 = f ( z )  = (zl + 1) 2 + (z2 + 1) 2 we obtain with 
Zl = v ~  cos o~ - 1 and z2 = v ~  sin a - 1 
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( f ' (x ) ,  x - z) > 4 [1 - cos(Tr/4 - a)] > 0 Va E R .  

For that reason w = (0, 0) T is a global minimizer of the problem. 

In the sequel we consider the problem of mathematical programming with a convex 
cost function f : X --+ R and restrictions, which are locally Lipschitz continuous 
functions. 

Let A be a nonempty closed subset of the reflexive Banach space X and let M 
be the set of  following restrictions 

M = {x E A C X : gi(x) < O, hi(x) = O, V~i, V ? j }  

with the locally Lipschitz functions gi, hj : X -+ R. Then we consider the problem 

inf f (x )  (2.11) 
xEM 

of mathematical programming. 

THEOREM 2.7. Suppose tha t -oo  < i n f ( f , X )  < f(xo) for xo E M holds. 
The element xo E M is a global minimizer of(2.11) if and only if the condition 

( p ( x ) , x -  z) > 0  Vx E M ,  p(x) E Of(x) ,  Vz E X : f (z)  = f(xo) 

(2.12) 

is fulfilled. I f  the condition (2.12) holds, then there exist real numbers to, ri >_ 0 
and sj E R, not all zero, and a point x* E X* so that 

(a) r~ g i ( x o )  = 0 i = 1, ..., n I 

?Z m 

(b) x* E roOf(xo) + ~ riOgi(xo) + ~ sjOhj(xo) (2.13) 
l 1 

(c) - x *  E cone OdA(xo) 

is true. Here the subdifferentials are understanding in the sense of Clarke [5] and 
dA is the distance function of the closed set A. 

Proof. By Theorem 2.5 we get the first part of the theorem with (2.12). If now 
(2.12) is valid, then the assertion (2.13) we obtain by the application of the multipli- 
er rule of Clarke [5] to the problem inf ((p(x),  x - x0) : x E M}. Here Of(xo) = 
O~(xo) is true for the function ~ : X --+ R defined by ~(x) = (p(x), x - x0), 
since the subdifferential mapping Of is a maximal monotone operator. [] 

EXAMPLE 2.8. Consider the function f with f (x )  = Ix2l, x = (Zl,X2) T e 
M c R  2 , M = { x E R 2 : g ( x ) < 0 ,  h(x) = O}, h(x) = x 2 + x 2 - 4 a n d  

- - X  1 -'1- X 2 -'{- 1 for xl > 0 
g(x) / X l + X 2 + l  f o r x l < O  
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The points u -- ( 0 , - 2 )  T, v = (2,0) T and w -- ( - 2 , 0 )  T satisfying (2.13) are 
classically critical points. The point u is not a global minimizer of f over M,  
since by (2.12) (p(x),x - z) : - 2  < 0 for z = (Zl,2) T with zl E R and 
x = (2, 0) T E M is fulfilled. On the other hand the points v and w satisfy (2.12) 
and are global minimizers of f over M. 

3. Minimization of  a Concave Function over an Arbitrary Nonempty Set 

In this chapter we examine the following optimization problem 

inf(P2) := infz~M [--f(x)] > --c~ (3.1) 

and want to derive a necessary and sufficient optimality condition for a global 
minimizer of (P2). Here, let f : X ~ R U {+cr  be a proper convex and closed 
function on the reflexive Banach space X, M C X a nonempty subset of X.  

First we define again a dual problem (D2) to (P2) in a similar manner as in 
Section 2: 

inf(D2) := inf inf [ - f ( x )  + (p(z), z - x)] .  (3.2) 
zEP xEM 

Here let P 3 M be an arbitrary subset of X and p(z) E Of(z) an arbitrary sub- 
gradient of the function f at the point z E dom f .  

LEMMA 3.1. If  P C D(Of) and P D M hold, then the duality relation 

inf(P2) = inf(D2) (3.3) 

is true. 
Proof For z E X withp(z)  E Of(z) we get 

- y ( z )  + (p(z), - x) _> - y ( x )  vx E X 

and inf(D2) >_ inf(P2). Due to P D M we obtain the equation (3.3). [] 

COROLLARY 3.2. If  we choose additional 

P := U {z E X :  f ( z ) =  f ( x ) } ,  
wEM 

then we get as a dual problem (3.2) 

inf(D2) = inf [ - f ( w )  + inf inf (p(z), z - x)] 
wEAI f(z)=f(w) xEM 

and the duality relation (3.3) is also fulfilled. 
Proof. Because of  P 3 M and Lemma 3.1 the assertion is true. 

(3.4) 

(3.5) 

[] 

THEOREM 3.3. Suppose that P C D(Of) holds. If zo E M is a solution of 
(P2), then the following condition 
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( p ( z ) , z - x ) > _ O  V x E M ,  V z E X : f ( z ) = f ( x o )  (3.6) 

is valid. 
Proof. By (3.3) and (3.5) we have 

- f ( x 0 )  = inf [ - f ( w )  + inf inf ( p ( z ) , z -  x)] 
zvEM f(z)=f(zo) xEM 

- f ( x 0 )  ~ - f ( x 0 )  + inf inf (p(z), z - x) 
f(z)----f(xo) ccEM 

therefore (3.6) is fulfilled. [] 

THEOREM 3.4. Suppose that the following assumptions 

- o o  < inf(f ,  X)  < f ( v )  Vv E M 

and 

(3.7) 

{x  E X : f ( x )  ~ f ( v ) }  = intdom f Vv E M (3.8) 

hold. I f  an element xo E M satisfy (3.6), then xo E M is a global minimizer of the 
problem (P2). 

Proof. If (3.6) is fulfilled for an element x0 E M and there exists an element 
E M with - f ( ~ )  < - f ( x o )  = - f ( z ) ,  z E X ,  then we consider the convex and 

continuous real function ~ : [0, +oo) --+ R 

~(t) = f ( t  z + (1 - t)~) - f(~) - t (p(z), z - ~) 

with z E X : f ( z )  = f(xo)  and p(z) E Of(z).  For this function ~(0) = 0, 

q(t) o (t),o o v t  > "=. ) E 0~(1), q(t) >_ 1 
and qa(1) = f ( z )  + (p(z),~ - z) - f(~) < 0 hold. If ~(1) = 0 is valid, then 
f ( z )  - f (~)  = (p(z), z - ~) < 0 holds contrary to (3.6). Therefore ~(1) < 0 is 
true. We denote by Lc = {x E X "  f ( x )  < f(xo)  = f ( z )  = c} the level set of the 
function f .  The level set Lc is convex and closed and possesses by the assumptions 
above a nonempty interior. There exists an unique determined element ( E bdL~ of 
the minimal distance of the element ~ E M t o L ~ "  inf{llz- ll : z E L~} = I1r 
We consider in the sequel the function ~ with z = ~. If ~(t) < 0 for all t > 1 
holds, then ~(t)  = ~(1) < 0 Vt > 1 is valid and we obtain for sufficient small 
t > 1 with ~ + t(r - ~) E int Lc the inequality 

f ( ~  + t ( ( -  ~)) - f ( ( )  -- (t - 1) (p(r ( - ~) < 0 

contrary to (3.6). Therefore there must exist a number s > 1, so that ~I,(s) = 0 and 
consequently 

f ( ~  + s ( r  ~)) -- f ( ~ ) =  s (p(r r  ~) 
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is valid. If Lc is unbounded along the half line {( + t ( (  - ~) : t > 0}, then 
+ s ( (  - ~) �9 int Lc and (p((, ( - ~) < 0 contrary to (3.6). On the other hand in 

the case that Lc is a bounded set along the half line above there exists a boundary 
point y = r ( + (1 - r)~ �9 bd Lc with r > 1 of the level set Lc. We calculate 
~(r)  = f ( y ) - f ( ~ ) - r  (p((),  ( - ~ )  andif  (p((, ( - ~ )  _> 0holds, then~(r)  _< ~(1) 
contrary to 0 �9 0~(1) and to the definition of the element ( �9 bdLc. Consequently 
(p((),  ( - ~) < 0 holds in contradiction to (3.6) and the assertion of the theorem 
is true. [] 

4. Concluding remarks 

The method to use a suitable dual problem for the construction of necessary and 
sufficient optimality conditions for a global minimum is also applicable to problems 
with nonconvex cost functions. One may obtain, at least, sharp necessary optimality 
conditions for a global minimum. This method involves a constructive possiblity 
for optimality conditions. We now shall apply this method to obtain optimality 
conditions of d.c. functions for selected examples. 

Let F �9 X -4 R be a d.c. function, F = f - g with the convex and continuous 
functions f ,g  : X -+ R.  Forp(y)  E Of(y)  and q(x) E cgg(x) we get 

F ( x )  + (p(y) - q ( x ) , y  - x) >_ F ( y )  Vx, y E X .  (4.1) 

If x0 E X is a global minimizer of the problem inf(F, X )  = F(xo) ,  then from 
(4.1) it follows that the condition 

(p(y) - q(x), y - x) _> 0 vy  �9 x ,  w �9 x : = F( 0) (4.2) 

is fulfilled. 
To prove (4.2), compare the proofs of Lemma 2.1, Corollary 2.2 and Theorem 

2.3. In connection with the optimality condition (4.2) we also consider the function 
~2 : X---+ R 

~ ( y )  = inf (p(y) - q ( x ) , y  - x)  
F(x)=F(xo) 

and obtain by (4. l) the inequality 

�9 (y) > F (y )  - F(x0)  vy  �9 x .  (4.3) 

For a d.c. function (4.2) is in general merely a necessary optimality condition for 
a global minimizer. 

The function F : R -+ R,  F ( x )  = 1/(x 2 + l) = f ( x )  - g(x)  with the convex 
functions f ( x )  = x 2 + 1/(x 2 + 1) and g(x)  = x 2 the condition (4.2) is fulfilled for 
the point x0 = 0, the absolute maximum point o f f  : [f ' (y)  - g'(x0)] (y - x0) _> 0 
Vy E R. 

The function F : R --+ R,  F ( x )  = (x 2 - l) 3 = f ( x )  - g(x)  with the convex 
functions f ( x )  = (x 2 - 1) 3 + 2x a and g(x)  : 2x 4 fulfil for the points x = +1 and 
x = - 1, two saddle points of F ,  also the condition (4.2). For the function �9 with 
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i f ( y ) =  inf  [ f ' ( y ) - g ' ( x ) ] ( y - x ) ] ,  
F(x)=O 

i f (y)  > 0 Vy E R is valid, but F ( z )  < 0 Vx E R �9 Ixl < 1 holds. The absolute 
minimum point of  F is z0 = 0 with F ( 0 )  = - 1 .  On the other hand, for a local 
minimum point of  a d.c. function (4.2) is generally not true. Let  us consider the d.c. 
function F : R --+ R, F ( x )  = 0.001 [cosh z - (x - 0.2)4]. We have F(x~)  = O, 

i = 1, 2, 3 , 4 ,  with Xl = - 0 ,  8927, x2 = 1,45151, x3 = - 9 ,  9715, x4 = 9, 6971, 
the absolute minimum point is (zs,  F (x5 ) )  = ( - 8 ,  6056;  - 3 ,  2812), the local 
maximum point is (z6, F (x6 ) )  = (0, 8079 ; 0, 0012) and the local minimum point 
is (x7, F ( x 7 )  ) -~- (8 ,3871 ;  - 2 , 2 9 7 8 ) .  

The condition (4.2) is for  this function a necessary and sufficient optimality 
condition for the global minimizer. For  the local extremums (4.2) is not valid. 

We investigate the behaviour of  the d.c. functions more precisely and extensively 
in another paper. 
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